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The dynamics of a polymer molecule 

S F EDWARDS and A G GOODYEAR 
Theoretical Physics Department, The Schuster Laboratory, University of Manchester, 
Manchester M13 9PL, UK 

MS received 17 January 1972 

Abstract. This paper is the first of a series discussing different aspects of the dynamics of 
macromolecules. The different kinds of motion to be expected are classified in terms of the 
relative magnitudes, expressed in time scales, of inertia, viscosity, barrier energies and 
temperature. In particular, and as a comparison for other cases, the idealized case of a 
strictly inextensible, but otherwise freely flexible chain, is solved in detail. The nonlinear 
nature of the constraint is shown to lead to the generation of a Fokker-Planck equation. 
This Fokker-Planck equation shows that there are wave-like solutions to the motion 
for long wave fluctuations in the conformation of the chain (second sound) in the absence 
of viscosity. In the high viscosity limit the equation has Rouse-like solutions which cor- 
respond to short wave changes in conformation. In general, the equilibrium function is 
modified so that if the chain is considered as a series of connected mass points, the energy 
is kT per point, not $kT, a result which though intuitively obvious, is difficult to establish. 
This idealized model can be related to several realistic cases but a reinterpretation of the 
constants is involved. 

1. Introduction 

Since polymer molecules occur in so many situations, the special properties of their 
dynamics are increasingly being studied. Several important and awkward points of 
principle arise in the study of their dynamics but the different physical regimes that 
could arise are of very different importance in applications. Thus great attention has 
been paid to the dynamics of a polymer in a dilute solution, but little to ‘cold’ polymers, 
or to a gas of ‘hot’ polymers. A discussion of the validity of any treatment, however, 
naturally takes one to the border of its validity, and one gains great insight by studying 
the behaviour outside the region of immediate importance. These other regions are 
of importance in themselves, particularly as the range of polymer studies increases. 
In this paper we shall try to describe the different regimes that can arise, what physical 
parameters determine the regimes, and how a polymer moves in the different regimes. 
Many of the physical features of the systems encountered in practice will still be omitted, 
or treated cursorily, since they need a much more elaborate discussion to do them justice. 
In particular the complexities of hydrodynamic interaction and of entanglements will 
be treated in a later paper. 

In the model considered, the polymer is a series of monomers with an energy barrier 
between different configurations, and is immersed in a solvent of a given viscosity. The 
monomers will be characterized by a length 1. Although several lengths could come into 
the problem, they will all be of the same magnitude, and will not be distinguished at 
this stage. The monomer will have a mass, m, and if its moment of inertia is important 
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966 S F Edwards and A G Goodyear 

it will be taken to be of the order of ml’. The system is characterized in energy by kT, 
and by the (lowest) energy barrier encountered, Q say. Finally there is a viscosity, v ,  
which will appear with the dimensions MT- ’. The three quantities kT, Q ,  v can be used 
to recognize three times t ,  = (m12/2kT)”2, t ,  = mjv and t ,  = (m12/2Q)”’. Six regimes 
can now be distinguished 

(i) t ,  > t ,  > t ,  
This is the system commonly studied in which inertia is ignored, and barriers are 

considered negligible. The initial understanding in this type of model was obtained in 
the classic papers by Rouse (1953), Beuche (1954) and Zimm (1956). The Rouse model 
typifies the regime which applies to warm polymer solutions. 

(ii) t ,  > t ,  > t ,  
This is the case of a cold polymer solution in which the segments hop, under thermal 

fluctuation, from configuration to configuration, over the barrier and against the vis- 
cosity. 

(iii) t ,  > t ,  > t ,  
This is a case of an isolated hot polymer which has no viscous drag, but freely changes 

configuration by mounting the barrier. The viscosity and diffusive forces are both 
supplied by the nonlinearity of the equations of motion which have an inertial origin. 

(iv) t ,  > t ,  > t ,  
Here is the case of a hot polymer in the vapour phase, and which is freely flexible. 

It is not really distinguishable from case (iii), since in a hot vapour both t ,  and t ,  can 
be neglected. 

(VI t ,  > t ,  ’ t ,  
This is the cold polymer in solution whose motion comes from occasional changes 

in configuration across the potential barrier, against the viscosity. In this case we do 
not ignore inertia as is done in case (iii). 

(vi) t ,  > t ,  > t ,  
This is the case of an isolated cold chain, and as such is not readily studied. It will 

apply to cold rubbers and glasses except in as much as neighbouring chains will inhibit 
the motion. 

To start on a detailed study, we shall look in detail at  the case of the dynamics of a 
freely flexible chain. Important points of principle arise in cases (iv) and (iii), and one 
can easily extend the analysis to case (i). 

2. The freely hinged chain 

The model taken will be that of a set of mass points, separated by a constant distance 
1, which are freely hinged 

The kinetic energy is $mi.: and the constraint 

\r,,--r,,-,I = 1. 
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Thus the Lagrangian is 

n n 

where the p ,  are lagrangian multipliers, the analogue of the pressure of incompressible 
hydrodynamics. We shall aim to derive Liouville's equation, then the Fokker-Planck 
equation and finally the diffusion equation of the system. Hence the distribution and 
correlation functions of the system will be calculated. These will involve probability 
distributions of the positions and velocities of the r,, hence the additional constraint 
obtained by differentiating 

( r n - r n - l ) 2  = I' 

( r n - r n - l ) . ( i . n - i , - l )  = 0 

One can also difference equation (2.3) to get 

and similarly 

Now consider the equation of motion from the Lagrangian 

~n = P n ( Y n -  r n -  1) - P n +  l(Yn+ 1 - rn). 

mvn -F, - 1) = Pn@n - rfl- 1 )  - P n  - l@n - 1 - rn- 2) + P n +  1(rn - r,+ 1)  

m(r, - P ,  - 1) . (r, - r, - 1)  = - m(i., - r, - 1)2 

(2.9) 
If this equation is differenced and a scalar product with (r, - r,- 1) taken, one has 

- P n ( m  - 1 - r n )  

= 2 P h n  - rn - 112 - P n  - l(rn - rn  - 1Mrn- 1 - r,  - 2) 

+Pn+l(m-r,-l)(rn-r,+1). (2.10) 

These equations take on a simpler form if r ,  is considered as a continuous function 
r (s ) ,  when, usinga prime to denote differentiation with respect to s, and a dot with respect 
to t 

rt2(s) = 1 

r" . r' = 0 

(ie s is in units of the length I )  

(2.11) 

and 



968 S F Edwards and A G Goodyear 

The equation of motion is 
my = - p'v' - py" 

my' = - p"v' - 2p'v" - p p  

- m L ' 2  = p v " 2 - p "  

and is simplified by differentiating 

which can be taken in a product with r' to give 

or 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

In terms of the discrete variables this becomes 

(P,+ 1 -2P, + P n -  1 )  -(rfl--rrl- ,)i(y,+ 1 - 2rfl +v,- 1 )  

- (v, - 2v,- 1 +v,- , ) } p ,  = m(L, - in-  1 ) 2 .  (2.16) 

This equation (2.15) can be solved with the aid of the boundary condition that p = 0 
at both ends of the chain, or the cyclic condition. One can proceed with 

P = p([rl, [VI, s). 
The explicit structure being discussed more fully below. The equations of motion are 
now expressed in terms of Y and c 

mu = -(pv')' 

u = v  

r' . U' = 0 

(2.17) 

and so can be deployed into the Liouville form. Let f ( [ v ] ,  [U], t )  be the probability that 
~ ( s ,  t )  = Y(S) and u(s, t )  = u(s) at the time t. Then 

(2.18) 
( v ' ( s ) .  u'(s))f = 0 

The first equation being a standard form, whilst the second is a convenient form of 
(2.4), a Fermi supplementary condition. One may equally write these equations in 
terms of 

;If 
7 + ct cp ufds - &(pp):f ds = 0 

( p .  u)f = 0. 

These equations have the equilibrium solution 

(2.19) 

(2.20) 

(2.21) 
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where 4s is any function and need not be anywhere continuous, that is for every n one 
may have a different function of ( r n - r , - l ) 2 .  This is proved by noticing that since 
Liouville’s equation is linear each term can be taken in turn. The term n6(r’ .  U‘) satisfies 
the supplementary condition. The second term llsq5(p2(s)) satisfies the equation since 

(2.22) a4 
at 

n S(r’ . U’)- = - n 6(r’ . v‘)(u . p)4’ O 

and the last term satisfies the equation because 

1 :$( 1 U’ ds) IJI 6(r‘ . v’)(pr‘)’ ds = S ( i  . u‘)pr’ . U‘- a* ds = 0. (2.23) 
ao 

The physical solution is 

f, = n 6(r ’ .  u‘ )  n - 1)6 
S S 

(2.24) 

Note the fact that each r‘’ = 1 has to  be put in as a boundary condition on (2.24), 
and similarly the total energy. The result is trivial, but at this point it is worth evaluating 
the total energy of the chain. One can see that each mass has lost one degree of freedom, 
so that instead of E = :NkT one can expect E = N k T .  This is indeed the case, for the 
entropy 

(2.25) 

eS/k = 

= EN x constant 

since 

/ 6(r” - 1)6(r’ . U’) n dr = 6@’ - 1)6@. U’) n 6p 
S s S 

1 

18‘1 

- _ -  (2.26) 

so the dimension of the integral ITs d3u/Iu’I is u Z N .  Thus 

S = N k  In E + constant 

E = N k T  

since (2.27) 
dE 
2s ’ 

T = -  

The discussion here has used the microcanonical ensemble. For further progress one 
must make the transition to the canonical ensemble. For a term like 6(E -4mZuX) the 
transition is to  exp( -&mZu;/kT) and similarly one might think of putting 

(2.28) 

but clearly this cannot be valid, for the right hand side is a precise constraint on 
(r,,-r,,- and not a very gentle constraint as is S(E-imCu;)  on any one of the U,. The 
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correct transition to the canonical system comes in the use of Fourier components. 
Introduce 

(2.29) r, = 1 exp( - 2ninul/L)r, 

U = o ,  +1, + 2 . . .  
U 

where for convenience the cyclic closed chain will be considered so that 

exp( - 2rtiuNl/L) = 1. 

Thus if 2rtu/L = w and nl = s for 0 < 101 < x / l ,  w lies in the first cell of reciprocal 
space. 

1 
ru = - 1 exp(2rtinul/~)r, 

271 n 

which in the continuum limit goes over to 
CO 

r(w) = e-’OSr(s)ds 

r(s) = _f_ J eiWsr(o) dw. 

J- m 

CO 

2rt - C O  

Now if we consider 

x (/ n 6(r” - 1) dr) - ’ 
S S 

one finds 

or a canonical ensemble of 

1 exp( -$ J w21r(w)12 d o  

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

that is 

P([r]) = J1’ exp[ -$ / r”(s) ds) (2.35) 

where N is a constant normalization. It now must be understood that this distribution 
may only be used for the evaluation of quantities which depend on o in the first cell 
of reciprocal space, that is functions which are defined over large distances correspond 
to ‘small U’. It is well known that functional distributions like (2.35) are equivalent to 
the diffusion equation. If 

(2.36) 

V2G = 6(r2 -r l )  
8G I 
as 6 

(2.37) 
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where now J (6r)  means integrate over all paths such that r(s2) = r2 and r (s l )  = r 1  (all 
[r,] having these end points). 

The diffusion equation describes the long distance behaviour of the chain, but not 
the short, so that the probability for r,, r ,+M is 

(2.38) 

but for M = 1 it must be B((r,-r,+ 1 ) 2 - 1 2 } ,  which is poorly represented by 

Returning to 6(E - imCu:)  alone, whose canonical form is 

m 
exP( -m c 4) 

there is obviously no difficulty in using the u ( o )  to get 

so one must derive the canonical form for the full distribution by taking r(w), o ( o )  and 
first evaluating 

(2.39) J 6(r (o )  - R)G(u(w) - t~)II ,6(r’~ - l)IIs6(r’ . o‘)6(E -4mJ U’ ds)II, dr do 
J IIs6(r’2 - l)IIs6(r’ . u’)6(E - i m J  o2 ds)ll, dr do 

and the result is as one would expect 

Note that the coefficient of Iv(w)12 is not m/2kT but 3m/4kT (which gives k T  for the 
energy not :kT),  and there are no terms in r’ . U’. This is because terms in r‘ . v’ are of 
order 1/L compared to the r‘* and U’ terms kept. The situation here is similar to the 
transition 

l16(r’2 - 1) -+ exp { -- iI 1 rt2 ds + 0 ( :) ) . (2.40) 

The higher terms that give the small scale structure do not effect large distances. Similarly 
l l 6 ( r ’ .  U‘) alters the u2 coefficient, but does not otherwise appear and its precise structure 
is what results from r(w) . o(w) terms. One must now, starting from the Liouville equation, 
undertake the same steps which in gas dynamics reduce this to the Boltzmann, or more 
appropriately in our case, the Fokker-Planck equation, an equation whose equilibrium 
solution is 

foe = .,+” exp( -z 3 L  Jo r’’ ds -- 3m 1 u2 ds) . 
4kT 

(2.41) 
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3. The Fokker-Planck equation for a polymer chain 

If the expressions for the pressure (2.15) are averaged and defined by 

or 

in the continuous form, one may write 

(pr’)’ = par" + F 

and rewrite (2.18) as 

If F is ignored for the moment 

provided that 

2kT 
P o  = 

(3.2) 

(3.3) 

(3.5) 

and so indeed it is from (2.15). The situation is now analogous to that of ordinary 
brownian motion (Chandrasekhar 1943 see also Wax 1954) in a gas 

(3.6) 

is the full equation. The Maxwell-Boltzmann solution is exp( - i m  Ci u:/kT) and 
satisfies 

This latter equation however only represents free particles, and the single particle 
equation derived from (3.6) is the Boltzmann or Fokker-Planck equation according to 
the circumstances. The analogy here is with the Fokker-Planck equation 
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here fo(ri, ui, t )  represents the single particle distribution function. Hence 

This suggests that one might expect a form like 

a 

(3.10) 

(3.1 1) 

which has a separable solution so is equivalent to 

(3.12) 

where, to avoid d o  appearing unaccompanied by an integral sign, there has been a 
reversion to Fourier components where A = L/2n. Whereas for a gas D is D(u), it will 
turn out that for the chain case D will be D(w) in the limit of a long chain (because for 
the chain, u(w) has infinitesimal weight, and because the o space is not homogeneous as 
is the ordinary space of gas molecules). The force F can be written from (2.15), and the 
important properties are all contained when it is written as 

F = cof(@)(o, wl,. . . ,of; C T ~ ,  g 2 , .  . . , crp)r(w1)r(w2). . . r (w I )  
IP 

I 

x u(al). . * u(op)6 o.+ 1 * (3.13) 

Note that 1 is odd and p is even, and that at w = O , f ( ‘ p )  will not in general vanish but be 
finite. The fixst two terms from (3.13) will be I = 3, p = 0 and I = 1, p = 2. Now it is 
well known in brownian motion studies (Chandrasekhar 1943 see also Wax 1954) that ifa 
random force S ( t )  acts on a system whose natural decay rate is y, then the equation 

i 1 ’ 1 4 

-+S(t)- f =  0 
( i t  ;J 

is equivalent to 

(3.14) 

(3.15) 

wheref is the average distribution (over F), and 

D = Iom ( P ( t ) S ( O ) )  e-Yt dt (3.16) 

provided that the decay of ( S ( t ) P ( O ) )  is faster than e-Y‘. Likewise 

(3.17) 
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becomes 

6 i a  
(3.1 s) 

where 

D = ( P ( r + u ~ t ,  t ) S ( r ’ ,  0)) e-” d3(r-r’) dt (3.19) 

provided that the correlation of (FF)  decays faster in space than a distance (U x decay 
time of (98)). These conditions are clearly satisfied in a normal brownian motion 
problem. They are not satisfied in a plasma (though usually assumed there) and indeed 
are extremely difficult to satisfy generally. This is because the long time decay ofequations 
of this type generally depends on the collective collision terms rather than the single 
particle behaviour (here called the ‘natural decay rate’), so that the condition is that the 
rate of decay must be shorter than itself. 

Since these are ‘order of magnitude of dimensions’ arguments, this statement can 
only mean the success of the reduction of (3.3) to (3.11) depends on the smallness of the 
ratio of two quantities of identical structure, that is, on a pure number being small. 
Thus in the Boltzmann equation one may argue validity by invoking the ratio of the 
size of a gas molecule to the mean free path. The validity of the Fokker-Planck equation 
of brownian motion depends on the ratio of the rate of change of the direction of the large 
particle to the rate of collisions of surrounding small molecules. There is clearly no 
such ratio available to use in this problem. However a pure number does appear in LL) 

and a justification for the transition to a Fokker-Planck equation will appear over certain 
o regions. If then F of (3.13) is regarded as a random variable one can expect 

fp c (3.20) 
2 V  

to be replaced by 

2 2 
- j ( @ ( t ) S ( O ) )  e-yt dt-. 
au d V  

(3.21) 

However as in the normal Fokker-Planck equation the dependence of P upon u ( o ) S  
will lead to a second term which can either be calculated ab initio or recognized from the 
known equilibrium solution to be 

where 

D = Jom ( F ( L ) P ( O ) )  e-yt  dt 

t It will be noted that the coefficients of the Fokker-Planck equation (a/au(w))o(w)(a/au( -w)+p(w)u(w)) are 
no longer constants, but are functions of w. Chandrasekhar (1943) has already noted that this possibility 
represents a generalization of normal brownian motion, and that the Fokker-Planck equation is still satisfied. 
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has the form 

o2 1 ( JP, f(lP){r(W1). . .r(o1), u(w1). . . u ( o , ) > t  

{r(wl).  . . r (q , ) ,  u(wl). . . ~(o,.))~. e-y(m)(r-r') d(t- t'). (3.23) 

The use made of the equation will not involve the precise evaluation of these expressions. 
The method of evaluation is shown in the Appendix. The final form of the equation is 
now 

) f ( l ' P ' )  

where 

D ( o )  = D ( 0 ) + o 2 D 1  + . . . . 

(3.24) 

(3.25) 

At this point it must be emphasized that this is all for case (iii), where the chain has no 
external forces and no external viscosity. From the form (3.25), in the case of no external 
forces or viscosity, one must have D(0) = 0, and the series commences with an w2 term. 
The form follows from dimensional analysis, and in the small o region where only the 
o2 term need be kept is (also including p o  explicitly at this point, using) 

(d dimensionless) 

(3.26) 

This equation is to be contrasted with the situation (i) arising when the chain is immersed 
in a liquid, becoming subject to random forces and to viscosity. Additional terms 

a a  
av av 

F(t)- + -Au (3.27) 

appear, where F(t) is a random force 

(F(t)F(O)) = qt ) .  (3.28) 

The effect will be to alter D ( o )  so that now D(0) is nonzero. In the first approximation 
D(0) is just h,  but D1 will be altered because of the presence of D(0) and the viscosity. 
The changes will however not alter the 3mu(o)/4kT form, since the new forces still lead 
to thermal equilibrium. Thus in the presence of a liquid, the chain behaves as free provided 
that 0 2 D l  > Do but there is no simple dependence of D, upon h, kT.  Otherwise, the 
diffusion term can be taken as constant. These cases lead to very different motions. 
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4. The motion of the molecule in cases (i) and (iii) 

A property of equations of the type derived is that they are completely specified by the 
second moments, in particular if the Fourier transforms with respect to time are in- 
troduced 

R(E, w )  = j j R ( s ,  t )  exp(ios + i d )  ds dt 

U(€, w)  = iCR(E,w). 
(4.1 ) 

and 
D(w) sin2(& - s’) + $ ~ ( t  - t’))  

dw d c  11 {e2 - ( 2 k T l m l ) ~ ’ } ~  +(3mD(o)/4kT)’r2 ((R(s,  t )  - R(s’, t’))2) = 

(4.3) 
(Note that for t = t’, this gives lis-s’l, as it must.) This expression corresponds to 
waves of dispersion 

damped by a dynamical friction 3mD(w)/4kT. Consider first the free polymer. In this 
case D x w2D, and the roots of the denominator in (4.3) are 

2kT . 3mw2D1 
Q2- -W + 1 ~  

ml ( 4kT ) ‘ = O  

E = + (*)1- .3mw2Dl * { -~ ( 3 ~ : ~ ) ~  +-w2 81; } 1 2 ]  [ 4kT 

which for small w is dominated by 

2kT l 2  
e =  U 

(4.5) 

(4.7) 

and the motion is that of entropy waves (‘second sound’). For large U. the friction 
dominates and the pole comes at 

3mD, 
E c i- 

4kT O2 
(4.8) 

the regimes changing over at w - ( ~ T / w I ) ~ ’ ~ / D ,  = l /dl l .  This implies that in the former 
case almost all motions are in fact due to entropy waves. 

For the polymer immersed in the liquid the situation is quite different, for at small w 
the inertia term can be ingored leaving 

E 2 i 1 2 v 0 2 .  (4.9) 
This is the case originally considered by Rouse and forms the basis of most of the sub- 
sequent literature. For large w the inertial term reappears and the entropy waves 
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begin to dominate, but now the condition is that 

2 k T o 2  3mD0 
ml 4kT 

>- or (4.10) 

If the viscosity of the liquid dominates the friction 3mD0/4kT = 1 so that the change 
over comes at 

(4.1 1) 

as one would expect. This condition excludes almost all motion in normal polymer 
solutions, and the decaying modes dominate. The value of ( (R(s ,  t) - R(s’, t ‘ )) ’)  is in 
general a complicated function, but for t = t’ it must be 11s - s’l. For the case where 
s = S I ,  it also simplifies in the two principal cases. For the free polymer, put 

w 2  sin*(&(t-t’)} dw dc s (r2-(2kT/ml)w2}2 + (3mD:/4kT)04c2 
(4.12) ( (R(s ,  t )  -R(s‘,  t’))’) = D1 

~in’$o(2kT/ml)”~(t- t’) 
w 2  

E D l /  d o  

z D l l ( x )  2kT 112 I t- t ‘ l .  

This is because s and t are on the same footing. But for the polymer in solution one 
obtains 

1 sin2{&(t - t ‘ )}  d o  dr s w4+12r2 
((R(s, t)-R(s‘, t ’ ) ) ’ )  = 

Likewise it follows that the incoherent quasielastic scattering functions from the free 
case have the conventional form 

(4.15) 

whereas for the polymer in solution the scattering functions have the Fresnel integral 
structure as discussed by de Gennes (1967). 

5. The motion of the molecule with potential barriers 

The remaining cases are those in which the motion, first studied by Verdier and Stock- 
mayer (1962), is dominated by the potential barrier between configurations. These are 
cases (ii) and (iii) in which the motion of the chain is caused either by the effects of a 
surrounding solution which causes the barrier to be surmounted, or by the internal 
thermal motion of the chain. The situation is described symbolically by saying that the 
configurations 
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have a potential energy in 0 which has two minima 

and the motion of the polymer is analogous to the transition under brownian motion 
between the two wells. In a real case of course a much more complicated motion takes 
place (Flory 1969, Birstein and Ptitsyn 1966). The motion in 0 will be governed either 
by fluctuating forces in the surrounding medium, and the viscosity of that medium 
(ii), or by the vibrations of the chain as a whole (iii). 

Brinkman (1956) has extended Kramers (1940) basic ideas to the more realistic 
case of two way flow across a potential barrier. Since there are no major alterations to 
the form of the rate, we shall use, for the sake of simplicity, the Kramers formulation 
which gives the rate in the quasiequilibrium case, as 

p 2 enp (-2) (5.1) 

where oA is defined as the frequency of oscillation of the particle in the region A of the 
potential field 

B 2: t 0 ; e 2  (5 .2)  

and o, is the frequency inlhe region C. The variable p is related to the dynamical fric- 
tion, and its magnitude gives some estimate of the time to set up a Boltzmann distribution. 

Case (ii) is readily translated into these terms, for if one ignores the inertia of the 
segments and considers the motion as the solution of a diffusion equation of the type 

-+- ~ p ( e , t )  = o 11 {+ a a h a l a w  
at ae 4 v 2  ae ae (5.3) 

where W ( e )  is the potential energy which hinders rotation about the backbone, v an 
effective viscosity, and h the effect of the random field of collisions. Since the equilibrium 
distribution must be exp( - W / k T )  one has h/v = kT.  From this structure one can obtain 
the Kramers rate. One then has 

R n ( A t )  = Rn(o)+  ( A R n ) o n ( t - t k )  (5.4) 
n 

where AR, is as before in the simple model (Rn+ -2Rn + Rn-  J and 0, represents jump 
functions at  times tk .  Assuming that At contains many jump times, but can still be taken 
over to a differential, as usual in brownian theory, an average can be extracted to give 

An = K(Rn+ 1 -2R,+ R,- 1 ) +  F (5.5) 

where K ,  the Kramers rate is the average of (E, @,/At) and F the difference between 
Z(ARn)Qn(t - tk) and its average. Treating this latter as a random function in time, one 
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returns to 

--E--(- a h  a i" at ar, 4 ar-,  

so that K = kT/h. As before w2 appears in the small limit ; in general there is an a(02) 
which for our simple configuration is sin2wl, but will be more complicated for real 
situations. So this case returns inevitably to the Rouse form with the Kramers rate 
replacing the inverse of viscosity. Considerable work has been done on the transition 
from a 'hopping' model of a polymer to the Rouse model. In particular Verdier and 
Stockmayer (1962) and Orwoll and Stockmayer (1969) have showed that such a reduction 
is possible. Recent work by Iwata and Kurata (1969) extends the proof. 

For case (v), the Fokker-Planck equation for 8,d = 4 can be derived, and will take 
the form 

where I is the moment of inertia (for simplicity everything is written in two dimensions), 
D is a diffusion constant. This form can be derived as before, and can then be used to 
obtain the analogue of (3.23). In this case, however, the Kramers rate involves dynamical 
friction rather than external viscosity, and the random fluctuations come from the 
thermal excitation of the chain rather than molecular bombardment. The calculation 
then proceeds as before. A physically realistic case will involve both mechanisms at  
once unless some rather peculiar circumstances arise, such as say a light atom rigid 
chain in the presence of a solvent of very heavy atoms which would lead to a pure 
case (ii). 

6. Conclusion 

The present work is still rather idealized and several problems are posed which it is 
hoped to return to. These include : 

(i) How can details of the micromotion be adapted to the macromotion? 
(ii) How can the entanglements of the molecules be introduced into the dynamics 

of a single long chain? 
(iii) How can the entanglements of the molecules be introduced into the dynamics 

of polymerized material? 
(v) How can hydrodynamic interactions be introduced into the above categories? 

The problems (i) and (iv) have received considerable study in the context of the Rouse 
model, but (ii) and (iii) have not been studied extensively, so we hope to return to this 
topic in later papers. 
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Appendix 

Given a polynormal force as in equation (3.13), there is a general method of expansion 
available, which was invented by one of the authors to study the problem of turbulence. 
There one has a quadratic equation of the type 

or in many body problems where the interaction is quartic one finds 

(Edwards 1964, Edwards and Sherrington 1967). For an equation of the type 

the result to a first approximation is given by 

then if q k  = c k / y k  is the equilibrium distribution 

where the sum sign includes all permutation of the indices. This is simply a Peierls- 
Boltzmann equation in the sense that if ( I x k l z )  is time dependent due to slow external 
effects 

Akk, ,,, k,qkl . . . (qm - qk) = external effects. 

The generalized rules for ci complex, or nondiagonal systems, and for higher orders 
are contained in the references quoted. 
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